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Most physicists will be familiar with the expression, put
forward by Euler in about 1792 and later proved in detail by
Legendre and by Cauchy, giving the relationship between
the number of vertices, the number of faces, and the number
of edges for an object with crystal-like habit, such as a
geometrical polyhedron or a faceted gemstone, namely

vertices + faces = edges + 2 (1)

or, with a more compact notation,
N,+N_=N_+2. (2)

The general validity of this result can be established for any
polyhedron by noting that it is correct for the case of a
tetrahedron, where N =4, N =4 and N_= 6. Adding another
point vertex near the centre of a face increases N by 1,
increases N_ by 2 since the original face is removed, and
increases N by 3. The relation therefore continues to apply.
The extra vertex could be lifted above the original face plane,
making a completely convex structure, or depressed to make
a concave structure, without changing the relationship.

There is a topological restriction applying to (2) in that the
space enclosed within the polyhedral surface, as well as the
pace outside, must be simply connected, by which we mean
that it must be possible to shrink any closed curve drawn
within this space to zero size without crossing any faces or
edges. This rules out objects in which the enclosed space is
toroidal, or polygonal tubes with both ends open.

n extended formulation

e primary aim of this note is to show the simple relation
12) can be extended to apply to crystal-like objects in a space
of any number of dimensions. It could well be that this
juestion has already been investigated and resolved by
mathematicians, but I have no citations to make. Instead

I rely upon the approach of the philosopher Ludwig
Wittgenstein, who wrote “I give no sources, because it is
mdifferent to me whether what I have thought has already been
thought before me by others.”

a first step, equation (2) can be rewritten:

N +N.=N_+N_+1, (3)
ere N is the number of unconnected spaces contained
within the object. For all the cases we have considered so far,
N, =1, but it is easy to construct an example with a higher
value of N.. Suppose we begin with a simple cube, for which
N, = 1, so that it clearly satisfies (2). Now insert a partition
parallel to one of the square surfaces of the cube. Because
this partition divides each of the edges and faces that it
intersects into two parts, this increases N, by 4, N_by 5 and
V. by 8, and, because the interior volume is now divided

ito two sections, increases N_ by 1. The relation (2) is still
satisfied, and further divisions of the interior volume have

similar results, provided they do not result in any torus-like
ctures.

f we examine the dimensionality of the objects referred to
terms in equation (3), we see that those on the left-hand
side have dimension 0 and 2 respectively, while those on

he right-hand side have dimensionality 1 and 3, omitting
onsideration of the final numerical term. This observation
eads us to propose a generalization of (3) of the form
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where N is the number of elements in the structure with

dimensionality 7, all elements being assumed to have simple

geodesic form — points, straight lines, planes, etc.

[t is straightforward to check this relationship in spaces with
a small number of dimensions, since N = 0 if n exceeds the
dimensionality of the space. For a zero-dimensional space
only point vertices can exist and an object can have only one,
so that N, =1and N, =0 for n > 0, thus satisfying (4). Such a
zero-dimensional object can, of course, also exist in any space
of higher dimensionality. For a one-dimensional space, and
neglecting the case of a zero-dimensional object, a simply
connected object with m point vertices must have

N,=m, N,.=m-1and N =0 for n > 1, again satisfying (4).

Two-dimensional objects in two-dimensional space become
more complex, since they may or may not enclose two-
dimensional spaces. A simple cross has N,=5, N, =4 and N,
=0, satisfying (4). A squarehas N,=4, N,=4, N, =1, again
satisfying (4), and if we add a line joining two opposite
edges then N = 6 and N, = 7, since each of these edges is
split into two separate one-dimensional objects, and N, = 2,
again satisfying (4). The familiar three-dimensional case has
already been discussed using the notation of equation (3).

Extension to objects and spaces with dimensionality higher
than three remains a conjecture, but a steady progression
through dimensionality exists. To convert from an object of
dimensionality zero to a dimensionality of one in a space of
dimensionality one or higher, we must add another point
not lying in its zero-dimensional space and join them with
on object of dimensionality one (a line). To convert from an
object of dimensionality one (a line) to a minimal object of
dimensionality two (a triangle), we must connect its vertices
to a point not lying within its one-dimensional space. To
convert from a triangle to a minimal object of dimensionality
three, we must connect its vertices to an additional point
not lying in its plane, thus making a tetrahedron. This
leads us to surmise that, in order to create a minimal object
of dimensionality four, we must take a tetrahedron and
connect its vertices to an extra point not lying in the three-
dimensional space that it occupies. Unfortunately it is nearly
impossible for us to visualize such an object! Once again,
following the discussion of three-dimensional objects, the
applicability of the result must be restricted to objects with
compact topology, eliminating those with the analog of
toroidal structure.

Conclusion

This short note takes a well-known theorem relating to the
geometry of polyhedral crystalline forms in three dimensions,
expresses it in a notation that is applicable in any number
of dimensions, and conjectures that this extended version,
which is demonstrably correct for objects in spaces of
dimensionality three or less, can also be applied to similar
objects of higher dimensionality embedded in spaces of
higher dimension. With theoretical physics expanding into
spaces with dimensions higher than twelve, this conjecture
is perhaps worthy of further attention and could even prove
useful. (Perhaps string theorists already know all about it!)
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